Forecasting inflation: An art as well as a science!

Ard den Reijer and Peter Vlaar

De Nederlandsche Bank

Forecasting workshop, Rotterdam, May 2004

Outline of presentation

- Motivation
- Model selection procedure
- Results for the Netherlands
- Do sub-indices give better forecasts?
- Dutch NIPE evaluation
- Conclusions

Purpose: monthly inflation forecast for ESCB eurozone projections

Forecasts for 5 sub-indices
 Common exogenous variables

 oil prices (futures)
 other commodity prices (futures)
 exchange rates (constant)
 interest rates (constant)

Up to 16 months ahead
 Including confidence bands for last month

Main problems

Changing seasonal patterns
Short sample
Which variables to include?

Endogenous versus Exogenous

Structural breaks
Non-stationarity

How? Model selection

Check for changing seasonal pattern

- Yes --> (V)ECMX in first and twelfth differences
- No --> (V)ARX in first differences
- Statistical evaluation every possible model
 - Information criteria (AIC, HQ, SC)
 - Root mean squared forecast error (RMSFE)
 - Mixture
- Economic evaluation of results
 - Does it make sense?
 - Stable forecasts

Periodic revaluation (results not robust)

How? Model use

• Adjust data before making forecasts: • structural changes in the past (RTV license) irregular seasonal pattern in last month • Assume 'institutional' prices exogenous: housing rents • natural gas wages • Ex post adjustments in excel: • foreseeable price changes (VAT, price war) 3

Results for the Netherlands:

• $\Delta_1 P^{uf}$ = constant + seasonals • $\Delta_1 P^e = \alpha_0 + \alpha_1 \Delta_1 P^{oil} + seasonals$ (natural gas price exogenous) rest VECMX in first and twelfth differences with: • at most one lag • relation Δ_{12} PHICP, Δ_{12} wage, Δ_{12} Pimport exogenous wage, oil price and/or US\$

رب يلان

Recursive 'out-of-sample' results

• All models outperform random walk and AR models

Disaggregated and direct HICP forecasts similar:

The Netherlands						Euro area				
norizon		Direct	Disaggregated			Direct			Disaggregated	
	Naive	AR	model	AR	model	Naive	AR	model	AR	model
1	0.36	0.36	0.31	0.35	0.28	0.21	0.20	0.19	0.20	0.15
3	0.61	0.71	0.51	0.66	0.46	0.39	0.32	0.30	0.36	0.28
6	0.97	1.11	0.71	1.05	0.70	0.43	0.35	0.32	0.47	0.37
12	1.60	1.79	0.80	1.63	0.98	0.65	0.71	0.59	0.80	0.63
18	1.97	1.94	0.99	1.82	1.10	0.78	0.97	0.96	0.85	0.72

Evaluation first 16 NIPE rounds

NIPE about equally good as model ------ AR ----- naïve

Outperforms benchmarks almost uniformly

model

"no RTV

Conclusions

Changing seasonal patterns essential element No 'best' way to select models => look at everything No clear preference for disaggregated approach Institutional knowledge (excel) just as important as econometrics => An art as well as a science! Robust models are not likely to be found

Services Netherlands

Confidence bands based on bootstrap

Same draw for all sub-indices to preserve correlation

