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1 Introduction

Empirical research on forecasting macroeconomic key variables aims to provide

fiscal and monetary policymakers with the most accurate predictions. The uni-

variate and low order vector autoregressive (VAR) models have for a long time

been the standard small-scale models for short term macroeconomic forecast-

ing. These models include only a small number of variables while policymakers

and applied forecasters are keen to extract information from many more se-

ries describing economic activity at a more disaggregate level. For instance,

Svensson (2005) describes what central bankers do in practice: "Large amounts

of data about the state of the economy and the rest of the world, including

private-sector expectations and plans, are collected, processed, and analyzed

before each major decision." The increase in the quantitity and quality of read-

ily available economic data stimulates a macroeconometric literature that ex-

plicitly incorporates information from a large number of macroeconomic vari-

ables into formal statistical models. For example, Garcia-Ferrer et al. (1987)

apply pooling techniques to establish a relationship between annual output

growth and leading indicators such as real stock return and real money supply

growth using a multi-country data set (see also Hoogstrate et al., 2000).

As an alternative strategy to handle large data sets, Bates and Granger

(1969) propose to combine the forecasts of many low-order equations exclu-

sively employing one of the available predictors. Moreover, Palm and Zellner

(1992) relate to the relative merit between combination and selection to attain

optimal forecasts.

The study adopts the notion that the essential characteristics of macro-

economic motions are captured by a few driving aggregate forces and that the

information contained in all potentially available economic key variables at

an aggregate level are individually less informative about macroeconomic be-

haviour. The related empirical literature suggests that factor-based forecasts

tend to outperform small-scale rival models, although the evidence is not over-

whelming, see Eickmeier and Ziegler (2008) for an overview of the empirical

macroeconomic factor forecasting literature and for instance Rünstler et al.

(2009) for a comparison over data sets for different European countries.

This paper applies the static factor model proposed by Stock and Watson

(2002a) and its dynamic equivalent of Forni et al. (2000; 2001; 2001; 2004;

2005) to Dutch quarterly data with the aim of forecasting the growth rates

of Gross Domestic Product (GDP) and inflation as measured by the the Con-
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sumer Price Index (CPI) for an horizon up to 4 quarters ahead. Like Boivin

and Ng (2005) and D’Agostino and Giannone (2007), we compare nested spec-

ifications of the factor models and forecast equation. The data are a subset

of the series underlying the Dutch central bank´s macroeconomic structural

model for the Netherlands (cf. Van Els and Vlaar, 1996) supplemented with

leading indicator variables. The data set consists of 124 series that can be

classified into six categories. Boivin and Ng (2006) and Jacobs et al. (2011)

show that enlarging a big data set not necessarily improves the factor forecast-

ing performance if the additional series are noisy or unrelated to the target

variable. In order to empirically determine the importance of the size and the

structure of the data set, we generate forecasts for different configurations of

the data set. We compare the factor model diagnostics of each specification

and data configuration with the corresponding forecast performance.

This paper is organised as follows. Section 2 introduces the factor model

and shows the specifications for which the cyclical dynamic factor collapses to a

static one. Section 3 describes the out-of-sample forecast simulation design, the

diagnostics of the factor model fit and the data set. Finally, section 4 reports

the empirical results, documents the diagnostics of the model specifications

and data configurations and, eventually, shows the best performing outcomes.

2 The factor model

Factor models are a tool to cope with many variables without running into

problems of too little degrees of freedom often faced in regression based analy-

sis.

2.1 Factor model representation

Consider a stationary stochastic vector process
{

xt = (x1t...xnt)
′}
with zero

mean and finite second-order moments ΓX (k) = E
[
xtx

′

t−k

]
. Each variable xi,

i = 1...n can be decomposed as the sum of two mutually orthogonal unobserved

components: the common component χi and the idiosyncratic component ξi.

The common components depend on a q-dimensional orthonormal white noise

process ft = (f1t...fqt)
′
driven by a small number of q dynamic factors fit with

q � n. The factor model reads as

xt = χt + ξt = Bn (L) ft + ξt, (1)
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where the dynamic loadings are represented by a (n× q)-polynomial of order
m : Bn(L) = (bi1 (L) , ..., biq (L))

′
= Bn

0 + ... + Bn
mL

m with the lag operator

Lsxt = xt−s. The factors and idiosyncratic disturbances are assumed to be

uncorrelated at all leads and lags, that is E [ftξil] = 0 ∀i, l. Clearly, if we let
Ft =

(
f ′t ...f

′
t+m

)′
and Λn = (Bn

0 ...B
n
m) , the dynamic factors obey the static

representation:1 χt = Bn (L) ft = ΛnFt. A model with q dynamic factors ft

thus consists of r = q (m+ 1) common static factors Ft. The dynamic nature

of (1) implies that Ft has a special structure: if m > 0 the rank of the spectral

density matrix of Ft (namely q) is smaller than the rank of the covariance

matrix of Ft (namely r).

The common component in (1) can be further decomposed into a cyclical

medium- and long-run component χct and a non-cyclical seasonal and irregular

part χnct , similarly to Altissimo et al.’s (2010) coincident indicator of the

euro area, €urocoin. This orthogonal decomposition is based on the two-sided,

symmetric, square summable bandpass filter β (L) (cf. p 275 in Priestley, 1982),

which separates waves of periodicity larger than a given critical number of

periods τ :

χcij,t =

∞∑
k=−∞

βkχij,t−k, βk =

{
1
kπ sin (2kπ/τ) for k 6= 0,

1/τ for k = 0.

Note that in a forecasting context, the finite sample approx-

imation of β (L) consists of truncating the tails such that the filter becomes

effectively one-sided, i.e. βk = 0 for k < 0. Now, each variable can be de-

composed into three orthogonal parts. When referring to the cyclical dynamic

factor model, however, we define the common cyclical signal as χct and rede-

fine the idiosyncratic part as ξt = xt−χct . The cyclical medium- and long-run
component χcij,t is thereby filtered for short-run fluctuations with frequencies

up to one year similarly to Altissimo et al.’s (2010) coincident indicator of the

euro area, €urocoin.

1 Moreover, the orthonormality assumption for the common dynamic factors ft is effec-
tively an identifying assumption. Consider a nonsingular (q × q)−lag polynomial A (L) of
order M ≤ m + 1. Then, Bn (L) ft = Bn (L) [A (L)]−1 A (L) ft = B̃n (L) f̃t shows that the
factors and factor loadings can only be identified up to a rotation.
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2.2 Factor model estimation

Denote by XnT = (xit)i=1...n,t=1...T an n × T rectangular array of stan-

dardized observations from the stationary vector process xt. Let Γ̂nTX (k) =
1

T−k
∑T
t=k+1x

nT
t xnT

′

t−k be the k-lag sample covariance of XnT . Moreover, let

Γ̂nTXY (k) =
1

T−k
∑T
t=k+1y

nT
t xnT

′

t−k, with y the non-standardized correspondent

of x. The common factors Ft are latent and can be estimated by general-

ized principal components. More precisely, let FnT = SnTXnT , where SnT =(
SnT

′

1 ...SnT
′

r

)′
is the (r × n)−matrix containing r generalized eigenvectors

of the couple of matrices
(
ΓnTX (0) ,ΓnTξ (0)

)
with normalization such that

SnT
′

i ΓnTξ (0)SnT
′

j = 1 if i = j and zero otherwise. Orthogonal projection of

the data xt on the factors Ft yield the factor loadings Λn = SnT and the

common component χnT = SnT
′
SnTXnT .

Forni et al.(2000; 2001; 2001; 2004; 2005) propose to estimate F̃nT by

generalized principal components S̃nTXnT , for which the (cyclical) generalized

eigenvectors2 S̃nT are obtained with ΓnTξ (0) being determined in the first

step of a two-step procedure, see appendix A.1.1 for details. The off-diagonal

elements of ΓnTξ (0) are set to zero as they are ill-conditioned in case n is

large. Stock and Watson(2002a; 2002b) obtains the estimate F̂nT by ordinary

principal components ŜnTXnT being a special case with ΓnTξ (0) = In, i.e.

the identity matrix. Computing the generalized principal components of x is

equivalent to computing the standard principal components of y = Hx with

det (H) 6= 0 and H such that Hξntξ
′

ntH
′
= In. The transformation H amounts

to downweighing x by the standard deviation of its idiosyncratic component.

2.2.1 Factor model specification

Estimating the factors by (generalized) principal components as described in

the former section only requires to specify the number of factors r. Bai and

Ng’s (2002) information criteria (BNIC) determine r as a trade-off between

goodness-of-fit and an overfitting penalty. The goodness-of-fit is measured by

the log of the residual sum of squares and different specifications of the penalty

2 More precisely, they propose the generalized eigenvectors of the couple of matrices(
Γ̃nTχ (0) , Γ̃nTξ (0)

)
. Given the factor model assumption of orthogonality between χ and ξ,

then S̃nT are also the generalized eigenvectors of the couple
(
Γ̃nTχ (0) + Γ̃nTξ (0) , Γ̃nTξ (0)

)
=(

Γ̂nTX (0) , Γ̃nTξ (0)
)
, with eigenvalues λnTj + 1. Although this equivalence holds in popula-

tion, it breaks down in sample.
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function that increase with sample size n and time series length T are proposed.

We employ the criterion that shows good performance in Monte Carlo studies

and whose penalty function is defined as r
(
n+T
T

)
ln (min {n, T}) . Note that in

case n = T , this penalty function becomes 2r lnTT , which is 2 times the penalty

factor of the usual Bayesian Information Criterion (BIC).

The number of factors r is the only parameter that needs to be specified

for the static factor method. The dynamic factor method estimates in the

first step of a two-step procedure the idiosyncratic covariance matrix ΓnTξ (0) ,

which requires the specification of the number of dynamic factors q, the para-

meter m that determines the maximum lag of the auto-covariance matrix and

the cyclicality parameter τ . We follow Forni et al.’s (2000) approach and select

q = 3 in the finite-sample as the marginal explained variance of the qth dy-

namic eigenvalue is larger than 10% and the (q + 1)th one is smaller than 10%.

Moreover, we employ a data dependent rule to set the maximum lead and lag of

m periods, that is bik,±nL±nfkt = 0 for n > m, at m (T ) = round
(
2T (1/2)

)
.

Finally, we set τ = 4, so all seasonality, which by definition entails a dura-

tion shorter than 1 year, or 4 quarters, is filtered out. Note that the cyclical

dynamic factor model nests the dynamic factor model, i.e. by setting τ = 1,

which by itself nests the static factor model, i.e. by setting m = 0 and q = r.

2.3 Factor model forecasting

The object of interest is the h-step ahead forecast of the stationary time se-

ries variable yi,T+h|T , whose standardized correspondent is xi with mean µi
and standard deviation σi. The factor forecasts read as yi,T+h|T = µi|T +

σi|T χi,T+h|T = µi|T + σi|T βhΛn,ifT .

As the parameters are not observed and, hence, need to be estimated, the

equivalence in population of the different forecast specifications breaks down

in sample, so ̂σi|T βhΛn,if̂T 6=
(

̂σi|T β1Λn,i

)h
f̂T 6= σ̂i|T β̂hΛ̂n,if̂T . Using the

same horizon for estimating and forecasting can modify the potential impact

of the model specification error (cf. Clements and Hendry, 1998). Therefore, we

disregard the parameter estimates that result from h times iterated one step

ahead forecasts
(

̂σi|T β1Λn,i

)h
. Moreover, as the stochastic process driving

the factors is generally not known, potential misspecification of β̂h can also be

avoided by determining ̂σi|T βhΛn,i as one parameter.
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Therefore, the unrestricted χy, respectively restricted factor forecasts χχ
are obtained by a linear projection of the h-step ahead observations yi,t+h,

respectively the common component χnTi,t+hon the t-dated factors fnTt . The

corresponding h-step ahead factor forecasts of the common component of the

i-th variable given T observations of n time series variables reads as:

χnTyi,T+h|T =
[
Γ̂nTXY (h)

]
i
SnT

′
(
SnT Γ̂nTX (0)SnT

′
)−1

SnTXnT

χnTχi,T+h|T = µ̂i|T + σ̂i|T
[
ΓnTχ (h)

]
i
SnT

′
(
SnT Γ̂nTX (0)SnT

′
)−1

SnTXnT
(2)

with sample mean µ̂i|T and standard deviation σ̂i|T . The static and dy-

namic factor forecasts can be obtained by employing ŜnT and Γ̂nTχ (h) , respec-

tively S̃nT and Γ̃nTχ (h) . As Boivin and Ng (2005) noted, the restricted factor

forecasts χχ adhere stronger to the factor structure as the matrix ΓnTχ (h) is

involved instead of the data driven matrix Γ̂nTXY (h) . This latter matrix also

contains the first moment µ and second moment σ. So, the unrestricted (dy-

namic) factor forecasts χy are obtained as

σi|T βhΛn,ifT + µi|T =
[
Γ̂nTXY (h)

]
SnT

′
(
SnT Γ̂nTX (0)SnT

′
)−1

SnTXnT .

Finally, D’Agostino and Giannone (2007) point out that ΓXY (0) is the un-

restricted equivalent of Γχ (0) namely for q = n, i.e. if the number of factors

equals the number of variables.3

The sampling error of the factor estimates enters the forecasts and might

even dominate the information gain in the factors. The forecast error is then

affected both by the estimation of the factors and by the equation relating

the estimated factors to the target variable. Rewriting the forecast equation

xi,T+h|T = χi,T+h|T + ξi,T+h|T = βhΛn,ifT + ρi (L) ξi,T =(
1− ρi (L)Lh

)
βhΛn,ifT + ρi (L)xi,T shows that forecasting the components

separately is equivalent to forecasting the sum plus one of the two components

separately. Boivin and Ng’s (2005) factor augmented autoregressive forecasts

(FAAR) simply augment lags of the estimated factors to an autoregressive

forecast equation of the non-standardized target variable:

ŷi,T+h|T = µ̂i,h + θ̂i,h (L) f̂T + γ̂i,h (L) yiT (3)

3 Moreover, the equivalence q = n holds in population and only also in sample if a rec-
tangular estimation window is employed to estimate the spectral density matrix

∑nT
X (θh) ,

see appendix A.1.1.
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The parameters µ̂i,h, θ̂i,h (L) and γ̂i,h (L) are obtained by regressing yi,t+h
on bf lags of f̂t and by lags of yit. A likewise forecast ỹi,T+h|T is obtained

using the generalized dynamic factors f̃T . The lags are chosen by the BIC

out of 1 ≤ bf ≤ 4 and 0 ≤ by ≤ 4. So, the smallest candidate model that

BIC can produce includes a constant, a single contemporaneous factor and no

autoregressive lags. The parameter µ̂i,h is the estimated mean of the stationary

variable. Since θ̂i,h (L) is not constrained to equal
(
1− ρ̂i (L)Lh

) ̂σiβhΛn,i,

µ̂i,h is not restricted to equal the sample mean µ̂i|T and no restrictions are

imposed on the coeffi cients of the bf lags of f̂t and by lags of yit, the FAAR

specification (3) nests the factor forecast specification (2) and is allowed more

flexibility to adapt to the data.

3 Forecasting Dutch GDP and inflation

3.1 Out-of-sample forecast simulation design

The aim is to generate forecasts yi,T+h|T for GDP and inflation for the Nether-

lands over a forecast horizon of h = 1, ..., 4 quarters ahead. The stationarity

inducing transformations concerning GDP consist of the first difference of the

log of GDP measured in constant prices, i.e. quarter-on-quarter real GDP

growth rates, while the transformation for inflation consists of the first dif-

ference of the fourth difference of the log of the CPI index, i.e. quarterly

changes of inflation rates. The forecasting exercise involves in-sample model

selection, factor estimation, parameter estimation and, finally, generating fac-

tor forecasts (2) and FAAR forecasts (3) . The in-sample selection of the factor

models and the specification of the forecast equation are performed accord-

ing to the various information criteria as explained in the previous sections.

The precise specifications are based on data that cover the first half of the

sample of observations, which runs from 1980Q2 until 1991Q1, and consists of

46 observations for each time series variable. Given the selected factor model

and the factor forecast specification, the forecast ŷh1991Q1+h is generated in the

first round. In the subsequent iteration, the factors and the parameters of the

selected factor model and forecast specification are reestimated and utilized

to generate the forecast ŷh1991Q2+h. The iteration repeats 46 times and results

in the final forecast ŷh2002Q4+h. The factors and the parameters of the selected

specifications are iteratively reestimated based on a rolling window scheme,
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which as we will show takes better into account the presence of structural

breaks in the data set than a recursive window scheme.

3.2 Factor model diagnostics

The extracted factors represent the underlying specific data set, which then

should capture correctly the main forces that drive the variable of interest, in

our case GDP and CPI. Boivin and Ng (2006) refer to oversampling as the sit-

uation in which the data are more informative about some factors than about

the others. Including more variables in an oversampled data set could result in

more precise factor estimates, which do however not improve the forecasting

performance for the variables that depend on the less dominant factors. Let the

commonality ratio R2i =
∑T
t=1χ

2
it/
∑T
t=1x

2
it indicate the relative importance of

the common component of variable i and let the average commonality ratio

of a specific data set be R
2
=
∑n
i=1R

2
i . A below average commonality ratio

for the variable of interest, R2i < R
2
, i ∈ {gdp, cpi} is then an indication of an

oversampled data set.

In absence of oversampling, the features of the data that improve the pre-

cision of the factor estimates relate to the importance and disperson of the

common component. The estimation precision improves when the common

component, as measured by R
2
, is important, but deteriorates with a larger

dispersion of the importance of the common component. The cross-sectional

dispersion R2q is measured by the difference between the R
2
i in the 90

th and the

10th percentile: R2q = R2.9N − R2.1N . So, adding data with large idiosyncratic
errors or weak factor loadings deteriorates the factor diagnostics.

3.3 Dutch data

The data set provides a balanced representation of the Dutch economy and of

the forces it is exposed to. For this purpose, the data set of the macroecono-

metric model MORKMON of De Nederlandsche Bank for the Dutch economy

(cf Van Els and Vlaar, 1996) is supplemented with variables potentially pos-

sessing valuable information from a forecasting perspective. The data cover the

Dutch national accounts on the expenditure components of GDP and describe

the behaviour of the macro actors in the economy: households, firms, mone-

tary financial sector, government and foreign sector. The data set is screened
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on variables that are only available at a yearly frequency, especially related

to the government sector, social security and the flow of funds like tax funds,

insurance and pension premiums. The data set is supplemented with a more

detailed extension of macro-wide variables and leading indicators.

The final data set consists of 124 time series variables, which can be di-

vided into six different categories. The first category labeled ‘GDP’consist of

GDP, its expenditure components, labour market variables, real wages and the

housing market. The second category labeled ‘industrial production’consists

of sectorally disaggregated time series on manufacturing turnover and capacity

utilization. The third category labeled ‘prices’consists of consumer, producer

and commodity prices. The fourth category labeled ‘financial’ covers the fi-

nancial developments captured by interest rates, exchange rates and the stock

market. The fifth category labeled ‘external’represents the external sector as

recorded on the balance of payments in variables such as income transfers,

direct and portfolio investment. The sixth and final category labeled ‘surveys’

consists of business expectations, assessments of stocks and order arrivals and

confidence indicators.

The details of the data including the preprocessing are explained in ap-

pendix B. The preprocessing includes outlier detection, removing seasonality

and stationarity inducing transformations, rendering standardized time series

variables of quarterly frequency. As the focus is on the size and structure of

the data set, we abstract from the release timing of the different variables.

Moreover, the entire data set was collected in the second quarter of 2004 and

consists of the fully revised historical series available as of this date. The col-

lected data set is the 2004Q2 snapshot of the variables and in this regard

the forecasting results will be different from the results using real-time data.

Finally, the sample period runs from 1980Q1 until 2003Q4.

4 Empirical results

We employ the out-of-sample forecast simulation design on different configu-

rations of the data set, one of which consists of preselected targeted predictors

along the lines of Bai and Ng (2008). Targeting predictors means that the pre-

selection is based on the relationship between the forecast variable y and the

indicator variables X. Bai and Ng (2008) use penalized regression techniques

and the most promising method for preselection is least-angle regression with

elastic net (LARS-EN). Zou and Hastie’s (2005) EN criterion in a regression
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problem allows simultaneously for shrinkage of coeffi cients, elimination of re-

gressors and effi cient selection of representatives within groups of highly corre-

lated regressors. Consider the regression yt+h = α1+α2∗yt+β
′
Xt+εt+h where

β represents the regression coeffi cients corresponding to the standardized sta-

tionary predictor variables. Denoting by RSS the residual sum of squares,

then Zou and Hastie’s (2005) EN crition looks like

min
β

RSS + κ1
∑
i

|βi|+ κ2
∑
i

β2i (4)

Efron et al.’s (2004) LARS is an effi cient solution to compute the regres-

sion coeffi cients β subject to the EN-criterion (4), which we will refer to as

LARS-EN. The algorithm starts with all coeffi cients β set to zero and then,

successively, the most important one of the remaining indicator variables is

selected according to criterion (4) while taking into account the correlation

with the already selected indicator variables. Bai and Ng (2008) show that the

algorithm provides a soft threshold ranking of the predictors as it takes the

presence of the other predictor variables into account. Moreover, the algorithm

avoids strongly correlated predictors, since if one of the correlated predictors

is already included, the new residual will have a low correlation with the pre-

dictor variables that are strongly correlated with the one already included. For

specifying LARS-EN, one fixes the shrinkage parameter κ2 and the number

of active regressors. Following Bai and Ng (2008), we set κ2 = 0.25 and a

stopping rule for the number of active regressors replaces specifying κ1. Our

main interest is not so much in the point estimates β, but in the ordering of

the variables and we set the number of active regressors at 62 corresponding

to half the size of the complete data set.

In order to empirically determine the importance of the size and structure

of the data set, we run the out-of-sample forecast simulation design for dif-

ferent configurations of the data set. Apart from the complete data set and

the data set consisting of targeted predictors, we perform the forecast sim-

ulation on each of the six groups separately and on the complete data set

excluding consecutively each one of the six groups. The forecasting perfor-

mance is summarized by the relative mean squared forecast error (ReMSFE),

which is the mean squared forecast error (MSFE) of the particular forecast

specification divided by the MSFE of the AR(1)-process. The different factor

forecast specifications (2) consist of the unrestricted factor forecasts χy versus
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the restricted ones χχ. Moreover, the factor forecasts employ static factors χ̂,

dynamic factors χ̃ or cyclical dynamic factors χ̃c. Table 4 reports the factor

model diagnostics and the forecasting performance for the different forecast

specifications. The results in the left part of the table are based on the com-

plete data set, while the results of the forecast specifications represented with

a bar, χ are averages over the 14 different configurations of the data.
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Table 1 Diagnostics for different factor model specifications

h χ̂χ χ̂y χ̃χ χ̃y χ̃cχ χ̃cy
R2gdp 0 1.80 1.80 0.86 1.30 0.74 1.27
(*10) 1 0.72 0.75 0.21 0.30 0.50 0.47

2 0.20 0.25 0.26 0.22 0.26 0.29
3 0.04 0.10 0.14 0.28 0.12 0.31
4 0.03 0.07 0.01 0.05 0.05 0.11

R2cpi 0 0.30 0.30 0.19 0.24 0.33 0.41
(*10) 1 0.12 0.70 0.05 0.04 0.20 0.13

2 0.03 0.76 0.15 0.19 0.15 0.29
3 0.01 0.62 0.09 0.14 0.14 0.24
4 0.00 0.41 0.02 0.03 0.10 0.11

R
2

0 1.00 1.00 0.76 1.00 0.66 0.99
(*10) 1 0.40 0.52 0.48 0.56 0.52 0.61

2 0.11 0.25 0.23 0.30 0.27 0.36
3 0.02 0.18 0.12 0.21 0.14 0.24
4 0.02 0.16 0.10 0.23 0.10 0.23

R2q 0 0.34 0.34 0.25 0.36 0.23 0.31
1 0.14 0.10 0.15 0.17 0.19 0.21
2 0.04 0.06 0.06 0.08 0.07 0.08
3 0.01 0.05 0.03 0.05 0.03 0.06
4 0.01 0.04 0.03 0.06 0.02 0.06

ReMSFE 1 0.84 0.85 0.87 0.87 0.87 0.88
GDP 2 0.90 0.92 0.95 0.96 0.91 0.94

3 0.96 0.93 0.99 1.01 0.96 0.99
4 0.98 1.05 0.95 0.98 0.96 0.97

ReMSFE 1 0.85 0.85 0.92 0.93 0.88 0.91
CPI 2 0.92 0.89 0.94 0.94 0.96 0.95

3 0.94 0.89 1.00 1.04 1.00 1.05
4 0.96 1.06 1.01 1.04 1.01 1.05

ReMSE 1 0.85 0.82 0.91 0.90 0.91 0.91
GDP 2 0.94 0.95 0.96 0.97 0.96 0.98

3 0.94 0.92 0.95 0.95 0.94 0.96
4 0.94 0.96 0.93 0.95 0.95 0.96

ReMSE 1 0.93 0.74 1.03 1.04 0.98 1.01
CPI 2 0.97 0.71 0.95 0.93 1.00 0.92

3 0.97 0.77 1.02 1.02 1.00 1.00
4 0.97 0.81 0.92 0.90 0.89 0.86
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h χ̂χ χ̂y χ̃χ χ̃y χ̃
c

χ χ̃
c

y

R2gdp 0 2.44 2.44 1.33 1.78 0.58 1.05
(*10) 1 0.57 0.65 0.25 0.30 0.37 0.36

2 0.20 0.31 0.23 0.24 0.18 0.22
3 0.12 0.30 0.12 0.25 0.08 0.22
4 0.08 0.19 0.07 0.14 0.05 0.12

R2cpi 0 1.41 1.41 0.99 1.30 0.87 1.31
(*10) 1 0.37 1.20 0.59 0.74 0.71 0.73

2 0.26 1.09 0.61 0.82 0.52 0.76
3 0.20 1.06 0.45 0.75 0.37 0.68
4 0.23 0.86 0.28 0.59 0.26 0.54

R
2

0 2.33 2.33 1.80 2.24 0.80 1.48
(*10) 1 0.54 0.70 0.64 0.73 0.61 0.67

2 0.28 0.44 0.33 0.44 0.29 0.40
3 0.20 0.36 0.21 0.36 0.14 0.29
4 0.15 0.29 0.16 0.33 0.10 0.24

R2q 0 0.43 0.43 0.37 0.47 0.23 0.43
1 0.12 0.13 0.15 0.17 0.18 0.19
2 0.06 0.10 0.07 0.10 0.07 0.10
3 0.03 0.08 0.04 0.08 0.03 0.07
4 0.03 0.06 0.03 0.07 0.02 0.06

ReMSFE 1 0.90 0.90 0.92 0.93 0.89 0.91
GDP 2 0.95 1.00 0.98 0.99 0.94 0.95

3 0.96 1.02 1.02 1.05 0.97 1.01
4 0.99 1.08 0.95 0.98 0.96 0.97

ReMSFE 1 0.89 0.95 0.91 0.92 0.88 0.90
CPI 2 0.96 0.95 0.97 0.99 0.96 0.96

3 0.96 1.00 1.03 1.08 1.00 1.06
4 1.00 1.13 1.01 1.06 1.00 1.04

ReMSE 1 0.88 0.85 0.88 0.87 0.89 0.88
GDP 2 0.93 0.94 0.95 0.96 0.94 0.95

3 0.96 0.97 0.95 0.96 0.94 0.96
4 0.96 0.96 0.93 0.94 0.95 0.94

ReMSE 1 0.96 0.79 0.95 0.93 0.89 0.88
CPI 2 0.98 0.78 0.92 0.89 0.90 0.84

3 0.95 0.79 0.97 0.94 0.93 0.89
4 0.96 0.84 0.93 0.87 0.88 0.80

Notes.
χ̂y is the unrestricted static factor-forecast, χ̂χ is the restricted static factor forecast, χ̃y is
the unrestricted dynamic factor forecast, χ̃χ is the restricted dynamic factor forecast, χ̃cy
is the unrestricted cyclical dynamic factor-forecast, χ̃cχ is the restricted cyclical dynamic
factor forecast. The results of the forecast specifications are based on the complete data
set of 124 variables. Moreover, the forecast specifications represented with a bar present
the average results over the 14 different configurations of the data. R2gdp, R

2
cpi and R2

indicate the relative importance of the common component of GDP, CPI respectively the
average relative importance of the common component of all the variables in the data set.
R2q measures the cross-section dispersion of the common component. Finally, ReMSFE is
the mean squared forecast error relative to the mean squared forecast error of the AR(1)
process and ReMSE is the mean squared forecast of the rolling versus recursive window
specification.
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The results in the table clearly shows that the average commonality ratio of

the complete data set R
2
is lower than its equivalent that is averaged over the

14 different configurations of the data R
2
, i.e. R

2
< R

2
, while simultaneously

it holds that ReMSFE<ReMSFE for all forecast horizons h. Smaller macro-

economic data sets exhibit stronger coherence, which is captured by the factors

explaining a larger part of the correlation between the variables. However, the

higher explanatory power of the factors does not lead to improved forecasting

performance. One explanation is that the better factor fit does not relate to

the variable of interest as shown by R2i < R
2
for i ∈ {gdp, cpi}, for which the

upper bar denotes the average over the 14 different data configurations. Here,

oversampling, or rather missampling, refers to the misrepresentation of a small

data set exhibiting a strong factor structure.

Comparing the diagnostics of the different factor forecast specifications, the

table clearly shows that the unrestricted factor forecasts χy exhibit a better

fit than its restricted equivalent χχ for the different specifications, horizons

h and data set sizes. Comparing the diagnostics of employing static factors

χ̂ as compared to dynamic factors χ̃ does not reveal structural differences,

excepting that the static method seems to exhibit a better factor fit and fore-

casting performance at horizon h = 1. Comparing the diagnostics of employing

dynamic factors χ̃ as compared to cyclical dynamic factors χ̃c only shows a

worse fit of the cyclical factors in case of small data sets. Finally, the last eight

rows in Table 4 benchmarks the forecasting performance concerning GDP and

inflation relative to employing a recursive window scheme. The results con-

firm that correcting for structural breaks by applying a rolling window scheme

overcompensates the loss of data at the beginning of the sample period, see

Eickmeier and Ziegler’s (2008) meta-analysis of the empirical factor forecasting

literature.

4.1 Forecast accuracy of various model specifications

In order to systematically analyse the forecasting performance of the differ-

ent factor forecasts (2) and the FAAR forecasts (3), we apply Giacomini and

White’s (2006) (GW) pairwise test of equal forecast accuracy. This test sta-

tistic can be applied to compare two competing series of forecasts generated

from estimated and, possibly, nested models under a rolling window scheme.

Under the null hypothesis, the squared difference between the forecast errors
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Table 2 Forecast accuracy of different model specifications for GDP; one quarter ahead
forecast horizon

χ̂χ χ̂x ŷ χ̃χ χ̃x χ̃cχ χ̃cx ỹ

χ̂χ 0.62 0.09 0.29 0.28 0.35 0.34 0.14
χ̂x 0.45 0.11 0.69 0.73 0.64 0.59 0.17
ŷ 0.34 0.34 0.18 0.15 0.21 0.23 0.81
χ̃χ 0.45 0.51 0.57 0.65 0.98 0.87 0.25
χ̃x 0.47 0.53 0.60 0.47 0.83 0.72 0.22
χ̃cχ 0.45 0.49 0.60 0.51 0.55 0.76 0.29
χ̃cx 0.51 0.53 0.55 0.51 0.53 0.47 0.31
ỹ 0.40 0.47 0.40 0.40 0.43 0.40 0.40

Notes.
See Table 4 for the explanation of the different factor forecast specifications. The results
are based on the complete data set consisting of 124 variables. Moreover, ŷ and ỹ represent
the unrestricted static respectively dynamic factor augmented autoregressive forecasts as
defined in 3. The p-values of the (symmetric) GW-test of pairwise equal forecast accuracy
are presented in italics in the upper part of the table. The summary statistics of forecast
accuracy over time IA<B(h) are presented in the lower part of the table for which model A
is represented in the row and model B in the column.

of two competing models is not statistically different from zero. We report the

(symmetric) p-values of the GW-statistic that reject the null hypothesis.

As an additional summary statistic for the relative forecast accuracy over

time, we follow Schumacher (2007) and pairwise count the number of time peri-

ods for which model A has a smaller squared forecast error than model B. The

counted number of time periods as a fraction of the total time span for which

forecasts are generated provides a summary statistic, denoted as IA<B(h), for

each forecast horizon h. So, if IA<B(h) > 0.5 then in more than half of the

forecast occasions, model A manages to outperform model B. Note that if,

at the complementary occasions, model B outperforms model A with much

smaller forecast errors, then it holds simultaneously that MSEA > MSEB

and IA<B(h) > 0.5. So, IA<B(h) is a complementary statistic to MSE.

The p-values of the GW-statistic and the forecast accuracy statistic over

time IA<B(h) at horizon h = 1 for the different forecast specifications are re-

ported in Table 2 for GDP in Table 3 for CPI. The results are based on the com-

plete data set consisting of 124 time series variables. The table show that the

FAAR specifications y for both GDP and CPI are clearly being outperformed

according to the statistic of forecast accuracy over time IA<B(h). Moreover,

the cyclical dynamic factor forecast χ̃c outperforms almost all other specifi-

cations, even significantly so in case of CPI according to the GW-statistic.

The model specification that impose the factor structure most, i.e. the re-
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Table 3 Forecast accuracy of different model specifications for CPI; one quarter ahead
forecast horizon

χ̂χ χ̂x ŷ χ̃χ χ̃x χ̃cχ χ̃cx ỹ

χ̂χ 0.91 0.43 0.03 0.04 0.13 0.09 0.48
χ̂x 0.46 0.45 0.23 0.19 0.49 0.31 0.51
ŷ 0.43 0.46 0.69 0.73 0.54 0.63 0.30
χ̃χ 0.33 0.41 0.54 0.19 0.07 0.39 0.78
χ̃x 0.35 0.41 0.57 0.48 0.05 0.07 0.83
χ̃cχ 0.50 0.41 0.61 0.57 0.59 0.09 0.61
χ̃cx 0.50 0.41 0.59 0.61 0.63 0.41 0.71
ỹ 0.41 0.43 0.43 0.39 0.39 0.37 0.39

Notes.
See Table 2

stricted factor forecasts employing cyclical dynamic factors, shows best fore-

casting performance despite showing among the weakest factor model diag-

nostics. Boivin and Ng’s (2005) FAAR specifications, which of all the possible

specifications imposes the factor structure to the least extent and therefore

allows the forecast equation most flexibility to adapt to the data, show worst

forecasting performance. As shown in section 2.2, the more complex dynamic

factor model weighs down the variables with a larger idiosyncratic variance,

which improves upon the forecasting performance (cf. rules SWa and SWb in

Boivin and Ng, 2006). D’Agostino and Giannone (2007) argue though that the

outperformance of the dynamic method is rather due to the rolling window

estimation scheme. Finally, the result based on Dutch data that imposing fac-

tor structure improves forecasting performance is in line with Eickmeier and

Ziegler’s (2008) meta-analysis of the empirical factor forecasting literature.

4.2 Forecast accuracy of various data configurations

The factor model diagnostics and forecasting performance at horizon h = 1

of the best performing dynamic χ̃cχ and static χ̂χ factor forecast specifications

and the FAAR specifications ỹ, respectively ŷ, for different configurations of

the data set are presented in Table 4 regarding GDP and in Table 5 regarding

CPI. The different configurations of the data set consist of each of the six

groups separately, the complete data set consisting of 124 variables, the LARS-

EN data set consisting of 62 targeted predictors and the complete data set

excluding consecutively each one of the six groups.
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ŷ

χ̃
cχ

ỹ
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The results in Table 4 show that size matters as the complete data set

of 124 series outperforms in terms of ReMSFE for almost all specifications

the data configurations consisting of each of the six individual groups, which

amounts to a size of around 20 variables. While the individual groups exhibit

a strong factor structure (high R
2
), most are prone to missampling (R2GDP <

R
2
). Moreover, the forecast accuracy statistic IA<B(1) tells that the complete

data set generally more often than half of the times outperforms the data

configurations consisting of the individual data sets, especially so for the factor

model specifications. The complete data set configuration also outperforms

data set configuration consisting of targeted predictors according to both the

ReMSFE and forecast accuracy statistics. The results in Table 5 regarding CPI

are less pronounced. The complete data set configuarion generally outperforms

the individual data group configurations for the factor model specifications,

though not for the unrestricted specifications y, according to both the forecast

accuracy and the ReMSFE statistics. The data configuration regarding group

2 consisting of industrial production series seems to possess good forecasting

performance, even though it is particularly prone to missampling (R2CPI <

R
2
).

Considering the restricted factor model specifications and taking the big

sized complete data set configuration as the benchmark, then Table 4 and Ta-

ble 5 show that factor model diagnostics matter. Excluding a particular group

of variables such that the remaining data set shows a better factor model

fit, as revealed by the factor model diagnostics, corresponds with improved

forecasting performance. For instance, factor diagnostics improve, especially

an enhanced R2i , i ∈ {gdp, cpi} and lower dispersion R2q , regarding GDP by
excluding group 6 consisting of survey variables and regarding CPI by exclud-

ing group 4 consisting of financial variables. The better factor model fit does

for both forecast variables corresond with a better forecasting performance

as shown by a lower ReMSFE and a higher IA<B(1). Apparently, the respec-

tive groups of variables expose the data compilation to oversampling, thereby

hampering forecast improvement.

From an intra-quarter sampling perspective, however, surveys and finan-

cial variables possess an early signal as they are more timely released than, for

instance, the industrial production series. Rünstler et al. (2009) and Caggiano

et al. (2011) employ data sets sampled at a monthly frequency to generate fac-

tor forecasts for, amongst others Dutch, GDP. The monthly data sets of the

two studies include more timely available, but also more idiosyncratically er-
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ratic series as money and financial series, surveys and price indices. As pointed

out by Rünstler et al. (2009), a one quarter ahead forecast for GDP entails

seven consecutive monthly forecasts considering that GDP is published only

six weeks after the corresponding quarter has ended. The Dutch results in

Rünstler et al. (2009) and Caggiano et al. (2011) show that mainly only the

one month ahead forecasts, which are effectively backcasts generated after the

ending of the concerning quarter but before its corresponding GDP release,

outperform the one-quarter ahead forecasts as reported in Table 4. For the

other horizons, the forecasting performance as reported in Table 4 compare

quite well. The forecasts are based on the data set of section 3.3, which is

sampled at a quarterly frequency and essentially encompasses the National

Accounts data that compiles GDP itself. Finally, Caggiano et al. (2011) con-

firm the result for Dutch data that size matters as preselecting the variables

does not particularly lead to an improvement in the forecast performance.

5 Conclusions

This study compares the forecasts of inflation and GDP growth rates for the

Netherlands over a forecast horizon up to 4 quarters ahead based on alternative

factor model specifications and various data set configurations. Based on each

possible combination of models and data, the aim is to determine a relationship

between the factor diagnostics and the forecasting performance.

Regarding the model specifications, the factor forecasts outperform the

FAAR specifications consistently for all specifications for both target vari-

ables. Of all the possible specifications considered in this study, the FAAR

specification imposes the factor structure to the least extent and therefore

allows the forecast equation most flexibility to adapt to the data. According

to the statistic of forecast accuracy over time, the best performing specifica-

tion is the restricted cyclical dynamic factor forecast. This specification rests

upon the most comprehensive factor design, which encompasses both dynam-

ics and cyclicality, and moreover, imposes the factor structure on the forecast

equation.

Despite the better forecasting performance, the diagnostics of the restricted

factor forecasts do however not compare favourably to their unrestricted coun-

terparts for different specifications, forecast horizons and data set configura-

tions. Comparing the diagnostics of employing static factors, dynamic factors

and cyclical dynamic factors does not reveal structural differences, except-
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ing that the static method represents the target variables better at the first

horizon.

Regarding the data set configurations, the results show that size matters

as the complete data set of 124 series outperforms regarding the factor spec-

ifications for both variables, but especially GDP, all the data configurations

consisting of each of the six individual groups separately. This result also

holds with respect to the data configuration consisting of targeted predictors,

which consists of the best performing half of all the variables according to a

penalized regression. Even though smaller macroeconomic data sets exhibit

stronger coherence, the factors being well fit do, however, generally not relate

to the variable of interest. Here, oversampling, or rather missampling, refers

to the misrepresentation of a small data set exhibiting a strong factor struc-

ture. Starting with the big sized complete data set, however, then excluding a

particular group of variables such that the remaining data set shows a better

factor model fit corresponds with improved forecasting performance.
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A Appendix

A.1 The estimator

In this appendix, we show in more detail how the common component χ can be estimated in

a stepwise procedure. Moreover, we will highlight the parameter condition that makes the

static factor model a special case of the dynamic one. Finally, we show in more detail the

estimator for the factor model forecasts in case the forecast equation is restricted to admit

the factor model structure.

A.1.1 The dynamic method

The dynamic method as outlined in Forni et al. (2000; 2001; 2001; 2004; 2005) (FHLR)

consists of the frequency-domain counterpart of the static method. The dynamic factors4

ut = (u1t...uqt)
′
are estimated by the dynamic principal components, which are the static

principal components of the spectral density matrix as outlined by Brillinger (1981). Let

XnT be the observations and Γ̂nTX (k) its k-lag sample correlation matrix. FHLR suggest

the following stepwise procedure:

(i) estimate the spectral density matrix (cf. Brillinger, 1981) of XnT as∑nT
X (θh) =

M∑
k=−M

Γ̂nTX (k)ωke
−ikθh , θh = 2πh/ (2M + 1) , h = 0, ..., 2M, where ωk =

1− |k| / (M + 1) is the Bartlett window of size M. Like Forni et al. (2000), we set

M (T ) =round
(
2T (1/2)

)
such that the convergence rate is M (T ) /T = O

(
T (1/2)

)
;

(ii) calculate from the spectral density matrix
∑nT
X (θh) the q largest dynamic eigen-

values λnTj (θh) and the corresponding dynamic eigenvectors pnTj (θh) , j = 1, ..., q for

h = 0, ..., 2M. We follow Forni et al.’s (2000) approach and select q = 3 in a finite-sample

such that the marginal explained variance of the qth dynamic eigenvalue is larger than 10%

and the (q + 1)th equivalent is smaller than 10%;

(iii) let pnT
q
(θh) =

(
pnT

′
1 (θh) ...p

nT ′
q (θh)

)′
the (q × n)−matrix of dynamic eigen-

vectors and λnTq (θh) a diagonal matrix with the q largest dynamic eigenvalues on the

diagonal. Inverse Fourier transformation of
∑̃nT

χ (θh) = pnT
′∗

q
(θh)λ

nT
q (θh) pnT

q
(θh) (∗

denotes complex conjugate) results in the correlation matrix of the common component

Γ̃nTχ (k) = 1
(2M+1)

M∑
k=−M

∑̃nT

χ (θh)ωke
ikθh for h = 0, ..., 2M. Moreover, the estimated com-

mon dynamic factors are ũnTt = 1
(2M+1)

M∑
k=−M

2M∑
h=0

pnT
q
(θh) e

ikθhxnTt−k. Projecting the data

on the common dynamic factors gives the estimator of the cyclical medium- and long-run

common component:

φ̃nTnt =
1

(2M + 1)

M∑
k=−M

2M∑
h=0

βkp
nT ′∗

q
(θh)p

nT
q
(θh) e

ikθhxnTt−k, (A.1)

4 The notation of the dynamic factors ut differs with ft in (1) as the latter notation is
now employed for the generalized principal component estimator of the dynamic factors in
step (v) below.
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where the finite sample approximation of β (L) consists of truncating the tails of the band-

pass filter that involve unavailable data observations, i.e. βk = 0 for k > M.

(iv) repeat step (iii) using the (q + 1) to n ordered eigenvalues to obtain Γ̃nTξ (k);

(v) let S̃nT=
(
S̃nT

′
1 ...S̃nT

′
r

)′
the (r × n)-matrix containing the r generalized eigenvec-

tors of the couple of matrices
(
Γ̃nTχ (0) , Γ̃nTξ (0)

)
with the normalization that

S̃nT
′

i diag
(
Γ̃nTξ (0)

)
S̃nT

′
j = 1 if i = j and zero otherwise. We use Bai and Ng’s (2002) infor-

mation criteria (BNIC) to determine the r generalized static factors as a trade-off between

the goodness-of-fit and overfitting. The factors can then be estimated by the generalized

principal components, i.e. F̃nT = S̃nTXnT , with F̃nT =
(
f̃nT1 ...̃fnTT

)
a (r × T )−matrix of

the stacked estimated factors;

(vi) let χ̃nT
i,T+h|T be the h-step ahead factor forecasts of the common component of the

i-th variable given T observations of n time series variables. The forecasts for the dynamic

common component can be obtained by projecting the (t+ h)−dated unobserved common
component χnTt+h on the t-dated factors f̃nTt , which for variable i results in:

χ̃nTi,T+h|T =
[
Γ̃nTχ (h)

]
i
S̃nT

′ (
S̃nT Γ̃nTX (0) S̃nT

′)−1
S̃nTXnT (A.2)

Evidently, the in-sample estimator for the common component can be obtained by setting

h = 0.

Step (i) until step (iii) allow to estimate the dynamic factor model. The estimated

cyclical common component φ̃nt is calculated by applying time filters to the x´s before

averaging along the cross-section. The dynamic estimation method consists of two-sided

filters and cannot be applied at the end of the sample, which is the most important part

for forecasting. By truncating the time filters, the performance of the estimator deteriorates

as t approaches T. Therefore in step (v), FHLR construct generalized principal components

FnT , which are contemporaneous averages of XnT that minimize the ratio of the variance

of the idiosyncratic to common component.
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B Dutch data set

The appendix describes the data set for the Dutch economy. The aim is to construct an

exhaustive collection covering different economic spheres, which gives a balanced represen-

tation of the economy and of the forces influencing it. For this purpose, the data set for the

macroeconometric model MORKMON of De Nederlandsche Bank is screened and supple-

mented with a set of macro variables of forward looking nature. The data set consists of

stock variables of five sectors, namely households, business, monetary financial institutions,

government and external world, and the variables describing the flows between these sectors.

The data set is screend on variables that are available only at a yearly frequency, especially

within the sphere of public finance and social security, taxation and capital formation. This

data set is supplemented with sectorally disaggregated production series, surveys and lead-

ing indicators, external economic developments and international financial developments as

transmitted by equity prices, a broader set of interest rates, exchange rates and commodity

prices. The data is preferably collected on a seasonally (and calender effects) adjusted basis

at a quarterly sampling frequency. Some of the series available on a quarterly frequency

are only disposable in raw format and are seasonally adjusted by applying the census-X12

method. Other series like interest rates, exchange rates and equity prices are kept in raw

format.

Table B.1 lists all the series and the columns report respectively the description of the

variable, unit of measurement, transformation code to render the variable stationary and the

original data source. The automated procedure of TRAMO (cf Gómez and Maravall, 1996)

is applied to correct the data for outliers and missing observations. Subsequently, the time

series are rendered stationary by following one of the codes: 1 = no transformation for

capacity utilization rates, unemployment rates, ratios and interest rate spreads, 2 = first

difference for interest rates, surveys, sentiment indicators and, in general, (nonstationary)

series possessing negative values like balance of payments statistics, 3 = first difference of

logarithms producing quarterly growth rates for the vast majority of the series and 4 = sec-

ond difference of logarithms for nonstationary series like wages, consumer prices, producer

prices, commodity prices and monetary aggregates. These stationarity inducing transfor-

mations are imposed without employing formal unit root testing procedures following the

practice of Stock and Watson (2002b).

As is required for factor estimation, the variables were standardized by subtracting their

mean and then dividing by their standard deviation. This standardization is necessary to

avoid overweighting of large variance series in the factor estimation. The full data set consists

of 124 series that can be divided equally into six different categories labeled GDP, industrial

production, prices, financial, external and surveys. The sample period runs from 1980Q1

until 2003Q4. Moreover, the data are collected in the second quarter of 2004 and represents

therefore the fully revised historical series, or equivalently, the 2004Q2 snapshot of the data.
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Table B.1 Description of data set

# Description Unit Transformation Original
codea sourceb

Group 1: GDP, gross value added and real activity
1 Gross domestic product by expenditure, constant prices mil. euro 95 3 CBS
2 Private final consumption expenditure incl. NPI-h, constant prices mil. euro 95 3 CBS
3 Government final consumption expenditure, constant prices mil. euro 95 3 CBS
4 Gross fixed capital formation, constant prices mil. euro 95 3 CBS
5 Gross fixed capital formation of dwellings, constant prices mil. euro 95 3 CBS
6 Gross fixed captial formation of machinery and equipment, constant prices mil. euro 95 3 CBS
7 Gross domestic product by expenditure, OECD (25), constant prices index 1995=100 3 OECD, QNA
8 Compensation of employees mil. euro 4 CBS
9 Unemployment persons*1000 4 CBS
10 Number of jobs employees jobs*1000 4 CBS
11 Negotiated wage (monthly base) index 1995=100 4 CBS
12 Collective final consumption expenditure of general government mil. euro 3 CBS
13 Capital formation excluding changes in inventories (sector), constant prices mil. euro 95 3 CBS
14 Negotiated wage (monthly base) index 1995=100 4 CBS
15 Residence permits granted number 3 CBS
16 Houseprices euro * 1000 4 Kadaster
17 Negotiated wage (all sectors: monthly base) index 1995=100 4 CBS
18 hourly wages, industry index 2000=100 4 CBS
19 issued vehicle registration certificates number (end of period) 3 CBS
20 Composite Leading Indicator (trend restored) indicator 2 DS
21 WO business cyle indicator NL indicator 1 DNB - division WO

Group 2: Industrial Production and capacity utilization
22 Productive hours worked per employee in construction index 1995=100 4 CBS
23 Capacity utilization in manufacturing industry % 3 CBS
24 World capacity utilization in manufacturing industry index 1995=100 3 OECD
25 production of consumptiongoods (average daily production) index 2000=100 3 CBS
26 production of investementgoods (average daily production) index 2000=100 3 CBS
27 average daily production - production industries index 2000=100 3 CBS
28 average daily production - energycompanies and waterworks index 2000=100 3 CBS
29 average daily production - mineral extraction index 2000=100 3 CBS
30 average daily production - industry index 2000=100 3 CBS
31 labour productivity, production per employed person index 2000=100 3 CBS
32 earnings per employee, private businesses, general government and other sectors index 1995=100 3 DNB/CBS
33 production per employee, private businesses, general government and other sectors index 1995=100 3 DNB/CBS
34 labour costs per unit, private businesses, general government and other sectors index 1995=100 3 DNB/CBS
35 capacity utilization manufacturing industry percentage 2 DS
36 capacity utilization intermediate and final goods percentage 2 CBS
37 capacity utilization consumer goods percentage 2 CBS
38 capacity utilization investment goods percentage 2 CBS
39 capacity utilization intermediate products percentage 2 CBS
40 labour costs per unit product, processing industry index 1995=100 3 EC
41 industrial turnover, foreign market, manufacturing index 2000=100 3 CBS
42 industrial turnover, domestic market, manufacturing index 2000=100 3 CBS

Group 3: Prices
43 Large scale price of natural gas eurocent p/m3 4 CBS
44 Foreign consumer price index 1995=100 4 SIR
45 HICP component housing index 1995=100 4 CBS
46 gas price index, small-scale, excl.vat index 1990=100 4 CBS
47 spot crude oil UK Brent US-dollar per barrel 4 OPEC
48 world market commodity prices, overall (euro area) index 2000=100 4 HWWA
49 world market commodity prices, overall excl. energy (euro area) index 2000=100 4 HWWA
50 world market commodity prices, food and luxury foods (euro area) index 2000=100 4 HWWA
51 world market commodity prices, industrial materials (euro area) index 2000=100 4 HWWA
52 world market commodity prices, agricultural-industrial materials (euro area) index 2000=100 4 HWWA
53 world market commodity prices, metals (euro area) index 2000=100 4 HWWA
54 world market commodity prices, energy-components (euro area) index 2000=100 4 HWWA
55 Producer prices, sale, industry, dom.+for.market, total interm.+final products Index 2000=100 4 CBS
56 Producer prices, large-scale gas consumption, dom.+for.market (index) Index 1990=100 4 CBS
57 Consumerprice index NL, total CPI, all households Index 2000=100 4 CBS
58 Consumerprice index NL, underlying inflation Index 2000=100 4 CBS
59 Consumerprice index NL, energy Index 2000=100 4 CBS
60 Consumerprice index NL, vegetables and fruit Index 2000=100 4 CBS

Group 4: Financial
61 Short term interest rate %-point 2 DNB-FM
62 Long term interest rate %-point 2 DS
63 Exchange rate dollar per euro 3 ECB
64 Domestic stock market prices 1983-IV=100 (end) 4 CBS
65 British pound per euro number 3 ECB
66 Japanese yen per euro number 3 ECB
67 Effective return om government bonds percent 2 CBS
68 Effective return on national loan (3-5 year) percent 2 CBS
69 Effective return on national loan (5-8 year) percent 2 CBS
70 Effective return on bank-bonds percent 2 CBS
71 Effective return on mortgage bonds percent 2 CBS
72 M1 mil. euro 4 ECB
73 M3 (money in circulation inclusive) mil. euro 4 ECB
74 spread (67 - 61) 1 calculation
75 spread (68 - 61) 1 calculation
76 spread (69 - 61) 1 calculation
77 spread (rl - 61) 1 calculation
78 Amsterdam Midkap-index index 830103=45,4(EUR) 4 Euronext Amsterdam
79 stock prices, CBS General index 1983=100 4 CBS
80 stock prices, internationals index 1983=100 4 CBS
81 stock prices, inland (domestic) index 1983=100 4 CBS
82 stock prices, financial institutions index 1983=100 4 CBS
83 stock prices, non-financial institutions index 1983=100 4 CBS
84 stock prices, general reinvestment index index 1983=100 4 CBS
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# Description Unit Transformation Original
codea sourceb

Group 5: External Sector
85 gdp germany mil. euro 95 3 ECB
86 gdp belgium mil. euro 95 3 ECB
87 gdp united kingdom mil. Br. pound 95 3 ECB
88 gdp united states bil. US-dollar 2000 3 BIS
89 gdp japan bil. Jap. yen 95 3 BIS
90 gdp france mil. euro 95 3 ECB
91 gdp italy mil. euro 95 3 ECB
92 exports of goods mil. euro 4 DNB, balance of payments section
93 imports of goods mil. euro 4 DNB, balance of payments section
94 balance on goods mil. euro 1 DNB, balance of payments section
95 exports of services mil. euro 3 DNB, balance of payments section
96 imports of services mil. euro 3 DNB, balance of payments section
97 balance on services mil. euro 2 DNB, balance of payments section
98 receipts (income account) mil. euro 3 DNB, balance of payments section
99 expenditures (income account) mil. euro 3 DNB, balance of payments section
100 balance on income mil. euro 2 DNB, balance of payments section
101 receipts (current transfers account) mil. euro 3 DNB, balance of payments section
102 expenditures (current transfers account) mil. euro 3 DNB, balance of payments section
103 net current transfers mil. euro 2 DNB, balance of payments section
104 balance on current account mil. euro 2 DNB, balance of payments section
105 inland volume of trade NCM mil. euro 3 Nederlandse Crediet Maatschappij
106 IFO-indicator index 2000=100 1 IFO-Institut

Group 6: Surveys
107 consumer confidence percentage 2 DS
108 producer confidence percentage 2 DS
109 nl business tendency survey: mfg. - export orders inflow percentage 2 DS - OECD
110 nl business tendency survey: mfg. - finished goods stocks percentage 2 DS - OECD
111 nl business tendency survey: mfg. - future production percentage 2 DS - OECD
112 nl business tendency survey: manufacturing - order books percentage 2 DS - OECD
113 nl business tendency survey: manufacturing - ordersinflow percentage 2 DS - OECD
114 nl business tendency survey: manufacturing - production percentage 2 DS - OECD
115 nl construction survey: order book position index - diffusion 2 DS - EC
116 nl consumer opinion survey: confidence indicator percentage 2 DS - OECD
117 nl industry survey: capacity utilisation index - diffusion 2 DS - EC
118 nl industry survey: current production capacity index - diffusion 2 DS - EC
119 nl industry survey: export expectation for mo. ahead index - diffusion 2 DS - EC
120 nl industry survey: mth. prod. assured by order book index - diffusion 2 DS - EC
121 nl industry survey: new order pstn. in recent months index - diffusion 2 DS - EC
122 nl industry survey: order book position index - diffusion 2 DS - EC
123 nl industry survey: prod.expectation for mth. ahead index - diffusion 2 DS - EC
124 nl industry survey: stocks of finished goods index - diffusion 2 DS - EC

N o te s .

a : 1 = n o t r a n s f o rm a t io n ; 2 = fir s t d iff e r e n c e s ; 3 = fir s t d iff e r e n c e o f lo g a r i t hm s p r o d u c in g q u a r t e r ly g r ow th

r a t e s ; a n d 4 = s e c o n d d iff e r e n c e o f lo g a r i t hm s fo r n o n s t a t io n a r y s e r i e s .

b : B IS B a n k o f In t e r n a t io n a l S e t t l em e n t s ; C B S C e n t r a l B u r e a u o f S t a t i s t i c s ; D N B -FM D e N ed e r la n d s ch e B a n k ,

d iv i s i e F in a n c i ë l e M a rk t e n ; D S D a t a s t r e am ; E C E u ro p e a n C om m is s io n ; E C B E u ro p e a n C e n t r a l B a n k ; HW WA

In s t i t u t fu r W ir t s ch a f t s f o r s ch u n g ; O E C D , Q N A O rg a n i s a t io n fo r E c o n om ic C o -o p e r a t io n a n d D e v e lo pm e n t ,

Q u a r t e r ly N a t io n a l A c c o u n t s . N o te s . S e e Ta b le B .1 . B a n k o f In t e r n a t io n a l S e t t l em e n t s ; C B S C e n t r a l B u r e a u

o f S t a t i s t i c s ; D N B -FM D e N ed e r la n d s ch e B a n k , d iv i s i e F in a n c i ë l e M a rk t e n ; D S D a t a s t r e am ; E C E u ro p e a n

C om m is s io n ; E C B E u ro p e a n C e n t r a l B a n k ; HW WA In s t i t u t fu r W ir t s ch a f t s f o r s ch u n g ; O E C D , Q N A O rg a n i s a t io n

fo r E c o n om ic C o -o p e r a t io n a n d D e v e lo pm en t , Q u a r t e r ly N a t io n a l A c c o u n t s .


