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Abstract

This paper derives a new criterion for the determination of the num-
ber of factors in static approximate factor models, that is strongly
associated with the scree test. Our criterion looks for the number
of eigenvalues for which the difference between adjacent eigenvalue
– eigenvalue component number blocks is maximized. Monte Carlo
experiments compare the properties of our criterion to the Edge Dis-
tribution (ED) estimator of Onatski (2010) and the two eigenvalue
ratio estimators of Ahn and Horenstein (2013). Our criterion out-
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Onatski (2010) for samples up to 300 variables/observations.
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1 Introduction

A widely used method to analyse large quantities of data in the social sci-

ences is factor analysis, in which the variation in a large number of observed

variables is described in fewer unobserved variables, or movements in a large

number of series are driven by a limited set of common ‘factors’. One of the

issues in factor analysis is the determination of the number of unobserved

variables to retain, i.e. the number of factors. Various methods are in use: (i)

heuristic methods like the Kaiser criterion in which only factors with eigen-

values greater than 1 are retained, or the scree test of Cattell (1966), which

will be explained in more detail below; (ii) stopping rules, see e.g. Peres-

Neto, Jackson and Somers (2005); or (iii) principal components analysis, see

e.g. Jolliffe (2002, Chapter 6) or Coste et al., (2005).

In recent years, large dimensional factor models have become more and

more popular in econometric research too. For an overview of recent develop-

ments see Bai and Ng (2008) or Stock and Watson (2011). The determination

of the number of factors is still high on the research agenda despite the fact

that many studies have proposed solutions and consistent estimators using

different factor model and distributional assumptions. Connor and Korajczyk

(1993), Bai and Ng (2002), Onatski (2009), Onatski (2010), Ahn and Horen-

stein (2013), Harding (2013) and Caner and Han (2014) develop estimation

methods for the number of factors in static factor models. Recent examples

for the number of dynamic factors are Amengual and Watson (2007), Hallin

and Lǐska (2007), Bai and Ng (2007), Jacobs and Otter (2008), Kapetanios

(2010) and Breitung and Pigorsch (2013).
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Figure 1: Graphical illustration of our criterion in a scree plot

Find the value of k for which the difference between adjacent eigenvalue –
eigenvalue number blocks DJ(k) ≡ J(k) − J(k + 1) ≡ kλk − (k + 1)λk+1 is
maximized

We derive a criterion for the determination of the number of factors in

approximate static factor models, that is strongly associated to the scree test.

This is a graphical technique, which consists of plotting the eigenvalues λk

against its eigenvalue number, and deciding at which value of k the slopes of

the plotted points are ‘steep’ to the left of k and ‘not steep’ to the right of k.

This value of k, which defines an ‘elbow’ in the graph, is then taken to be the

number of factors to be retained. Our criterion is based on the comparison

of surfaces under the scree plot, as illustrated in Figure 1. We look for the

value of k for which the difference between the adjacent products of the
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eigenvalue numbers times the corresponding eigenvalues, in other words the

difference between adjacent eigenvalue-eigenvalue number blocks (DJ(k) ≡

J(k)− J(k + 1) ≡ kλk − (k + 1)λk+1) is maximized.

In simulation experiments we compare our criterion to a couple of other

estimators based on eigenvalues and also associated to the scree test. The

Edge Distribution (ED) estimator of Onatski (2010) is based on the fact that

any finite number of the largest of the bounded eigenvalues of the sample

covariance matrix cluster around a single point. His estimator consistently

separates the diverging eigenvalues from the cluster and counts the number of

the separated eigenvalues, which is his estimate of the number of factors. Ahn

and Horenstein (2013) propose the Eigenvalue Ratio (ER) and the Growth

Ratio (GR) estimators. The ER estimator is obtained by maximizing the

ratio of two adjacent eigenvalues arranged in descending order

λk
λk+1

=
V (k − 1)− V (k)

V (k)− V (k + 1)
,

while the GR estimator maximizes

ln (V (k − 1))− ln (V (k))

ln (V (k))− ln (V (k + 1))
=

ln (1 + λ∗k)

ln
(
1 + λ∗k+1

) ,
where V (k) =

∑m
j=k+1 λj, λ

∗
k ≡ λk∑m

j=k+1 λj
and m = min(n, T ) for the number

of variables n and the number of observations T . Our criterion outperforms

the two eigenvalue test ratios of Ahn and Horenstein (2013) for all sample

sizes, except for their base scenario. It also outperforms the ED estimator of

Onatski (2010) for samples up to 300 variables/observations. This conclusion
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is robust for variation in the signal to noise ratio and situations where “weak”

factors are present, which may have a huge impact (Onatski 2012).

The rest of the paper is structured as follows. Section 2 derives our crite-

rion and shows its consistency using the set-up of Onatski (2010). Section 3

presents Monte Carlo simulation experiments. Section 4 concludes.

2 Method

Our criterion

To introduce our method we consider the basis specification of Onatski

(2010), which is discussed below, in a slightly different notation. Consider

the factor model

xt = Bft + εt, (1)

where xt is an n-dimensional vector of stochastic normalized variables, i.e.

E{xit} = 0 and var{xit} = 1, for i = 1, . . . , n for all t; B = (b1 . . . bk)

with bj ∈ Rn, is a matrix of factor loadings; ft ∈ Rk a vector of factors

independently distributed from the idiosyncratic component vector εt, which

is further specified below.

Let E{xtx′t} = V = CΛC ′ with ordered eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

Assuming rank(BB′) = k

tr(E{xtx′t}) =
n∑
j=1

λj =
k∑
j=1

λj +
n∑

j=k+1

λj = n, (2)
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where
∑k

j=1 λj is the explained variance which can be rewritten as
∑k

j=1 λj =

kλk +
∑k

j=1(λj − λk).

By defining J(k) ≡ kλk to be the minimum explained variance we have

J(k + 1) = J(k) − DJ(k) for k = 1, 2, . . ., where DJ(k) is the change in

the minimum explained variance if the factor space is increased by one, with

DJ(k) ≤ 0 or DJ(k) > 0. Our criterion becomes now to maximize DJ(k)

as illustrated in Figure 1.

In the simulations in Section 3 below, we employ the DJS estimator

which consists of the constrained optimization k̂ = argmax
k

D̂J (k) with the

constraint that D̂J
(
k̂ − 1

)
< 0. Since this constraint does not affect the

asymptotic properties of our criterion, we will investigate the large sample

properties of DJ(k) using the framework of Onatski (2010).

Remark 1. To measure the sensitivity of the criterion DJ(k) with respect

to a small change in the eigenvalues, the total derivative can be used

∂DJ(k) = k∂λk − (k + 1)∂λk+1,

with ∂λk and ∂λk+1 small positive changes. For Ahn and Horenstein (2013)’s

eigenvalue ratio ER(k) ≡ λk/λk+1 we have

∂ER(k) = λ−1k+1(∂λk − ER(k)∂λk+1)

with is sensitive to small changes in the eigenvalues in case of λk+1 << 1,

whereas our criterion is stable.
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Asymptotics

Onatski (2010) considers the approximate factor model

X(n,T ) = B(n,T )F (n,T ) + e(n,T ), (3)

where X(n,T ) is an n× T matrix of data on n cross-sectional units observed

over T time periods, B(n,T ) is an n × r matrix whose (i, j)th element is

interpreted as the loading of the jth factor on the ith cross-sectional unit,

F (n,T ) is an r × T matrix whose (j, t)th element is interpreted as the value

of the jth factor at time t, and e(n,T ) = AεG is an n × T matrix of the

idiosyncratic components of the data, the n × n matrix A and the T × T

matrix G are two largely unrestricted deterministic matrices, and ε is an

n × T matrix with i.i.d. Gaussian entries, so that both cross-sectional and

temporal correlation of the idiosyncratic terms is allowed.

Let the ordered eigenvalues of the sample matrix
(
X(n,T )′X(n,T )

)
/T (n)

be λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂m with m = min (n, T ) and
∑m

i=1 λ̂i = n. We assume

that Assumption 1 and 2, Lemma 1–3, and Theorem 1 of Onatski (2010)

hold.

Let {T (n), n ∈ N} be a sequence of positive integers such that n/T (n)→

c > 0 as n → ∞. Let kmax/n → 0 as n → ∞ with the maximum possible

number of factors kmax assumed a priori given sample size n, T (n). Let

D̂J(k) = k
(
λ̂k − λ̂k+1

)
− λ̂k+1.

Onatski (2010, p1007) writes that his Theorem 1 suggests a way to esti-

mate the true number of factors r. For k(n) > r and large enough n, λ̂k+1 is fi-

nite with probability one as n→∞. For any k > r the difference
(
λ̂k − λ̂k+1

)
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converges to zero with probability one, while the difference
(
λ̂r − λ̂r+1

)
di-

verges to infinity. It follows that the estimator D̂J (k) = kλ̂k − (k + 1) λ̂k+1

converges as n, T (n) → ∞ for k > r while it diverges to infinity for k = r.

Hence, our estimator D̂J(k) is consistent.

Remark 2. By considering D̂J(k)/k and threshold λ̂k+1/k, our estimator

fits in the family of estimators of Onatski (2010, Equation (10))

r̂(δ̂) = max
{
k ≤ kmax : λ̂k − λ̂k+1 ≥ δ̂

}
, (4)

with δ̂ = 1
k
λ̂k+1. So, whereas Onatski has to estimate the threshold in an

ad-hoc way, our threshold is simply λ̂k+1/k.

Remark 3. Onatski’s family of estimators in Equation (4) is consistent

even for weak factors, which are defined as factors whose explanatory power

for response variables grows slower than the rate of n. If the k-th factor is

weak, then plimm→∞ λ̂k = 0, but plimm→∞mλ̂k =∞.

Remark 4. The eigenvalue ratio estimators of Ahn and Horenstein (2013)

require more strict assumptions to prevent the denominator of the ratios

from becoming equal to zero.

3 Monte Carlo experiments

We compare finite-sample simulations of our DJS estimator with the two

alternatives proposed by Ahn and Horenstein (2013), the eigenvalue ratios

ER and GR, and the ED estimator proposed by Onatski (2010). For all the
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estimators considered, the argument search is performed over k = 1, . . . , kmax

with kmax = 8.

We employ the data generating process as specified in Ahn and Horenstein

(2013), which is also used by Bai and Ng (2002) and Onatski (2010). The

foundation of the simulation exercise is the following approximate factor

model:

xit =
r∑
j=1

bijfjt +
√
θuit; uit =

√
1− ρ2

1 + 2Jβ2 eit, (5)

where eit = ρei,t−1 + (1− β) νit + β
∑min(i+J,n)

h=max(i−J,1) νht and the νht and bij are

all drawn from N (0, 1) . The idiosyncratic components uit are normalized

such that their variances are equal to one for most of the cross-section units

J .1 The control parameter θ is the inverse of the signal to noise ratio (SNR)

for the individual factors because var (fjt) / var
(√

θuit

)
= 1/θ. When it is

necessary to change the SNRs of all factors, we adjust parameter θ. However,

we also simulate a single weak factor by drawing from N (0, θwf ) for the weak

factor and from N (0, 1) for the other factors, so θwf represents the relative

dominance (or weakness) of the single factor. The magnitude of the time

series correlation in the idiosyncratic component is controlled by parameter

ρ. Note that Equation (5) describes an approximate static factor model,

so no autocorrelation for the factors is assumed. Parameter β governs the

magnitude of cross-sectional correlation. We will focus on the specification

with both serially and cross-sectionally correlated errors, ρ = 0.5, β = 0.2,

J = max (10, n/20). Despite the fact that the means of the factors, the factor

loadings and the idiosyncratic component are all zero in the data generating

1More specifically for units J + 1 ≤ i ≤ n− j.
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process (5), we use double demeaned data, i.e. xit−T−1
∑

t xit−n−1
∑

i xit+

(nT )−1
∑

i,t xit, in order to avoid the one-factor bias problem as identified by

Brown (1989).2

Base scenario

We focus on the model with r = 3 factors and configurations of the sample

size over the grid (n, T ) = 25, 50, 75, 100, 150, 200, 300, 500, inverse signal to

noise parameter θ and the relative weakness of one of the three factors θwf .

Based on 1000 simulations for each configuration, we compute for each of

the four different estimators DJS, ER, GR and ED the estimated number of

factors k̂, i.e. the mode, and three performance statistics, the mean error, the

root mean squared error (RMSE) and the frequency of incorrect estimated

number of factors. To illustrate the measures, suppose 1000 simulations

produce 700 correct outcomes of k̂ = 3, 200 outcomes of k̂ = 2 and 100

outcomes of k̂ = 4, the latter two both incorrect. Then the mean error equals

0.1, the RMSE
√

(0.3), and the frequency of incorrect estimated number of

factors is 0.3, which hence does not pass a 10% threshold level.

In the simulations based on Ahn and Horenstein’s (2013) baseline spec-

ification consisting of a three-factor model with θwf = θ = 1, all estimators

produce a mode equal to three factors. Figure 2 shows the results for the

performance statistics. The figure shows that our proposed estimator DJS

compares reasonably well with the other ones for this base scenario, but per-

forms less well than the others. The figure also shows that the AH estimators

2We employ double demeaned data for the estimators of Ahn and Horenstein (2013)
ER, GR and our proposed estimator DJS, but not for Onatski’s (2010) ED estimator.
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come out well in this base scenario with θ = θwf = 1. Below we will see that

this outcome is not robust.

Figure 2: Performance of different estimators
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Note. Simulations are based on θ = θwf = 1.

Robustness

To check the robustness of the performance of the different estimators, we

extend the grid for the inverse signal to noise parameter θ to 18 points:

θ = [1
2
, 3
4
, 1, 5

4
, 6
4
, 7
4
, 2, 9

4
, 10

4
, 11

4
, 3, 13

4
, 14

4
, 15

4
, 4, 5, 7, 12]. In addition, we extend

the grid for the weak factor parameter θwf to 15 points: θwf =
[

3
32
, 1
8
, 3
16
, 1
4
, 3
8

,

1
2
, 3
4
, 1, 3

2
, 2, 3, 4, 6, 8, 12

]
. The combined grid consists then of 18 × 15 = 270

different configurations, each consisting of 1000 simulations. The perfor-
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mance of the different estimators for each configuration is summarized by

the estimated number of factors, i.e. the mode of the simulations, and the

frequency of the incorrect estimated number of factors. For each of the 270

configurations these performance statistics are further summarized by the

percentages in Table 1, representing the fraction of the different configura-

tions for which the mode consists of the true number of factors, i.e. k̂ = 3.

The percentages presented in Table 2 show the fraction of the different con-

figurations for which the frequency of incorrect estimated number of factors

is larger than 10%. To keep the tables and outcomes readable, we only report

outcomes for sample sizes where the number of variables n is equal to the

number of observations T , as in Ahn and Horenstein (2013).

The first block in the two tables summarize the results of all 270 different

configurations. The estimators DJS and ED clearly outperform the other

alternatives for large sample sizes. Since this is not apparent in the standard

configuration θ = θwf = 1 shown in Figure 2, the outperformance must by

construction be due to variation in θ and θwf .
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Table 1: Correct number of factors according to the different estimators

(n, T ) 25 50 75 100 150 200 300 500

∀θ, ∀θwf , grid = 270
ER 7 13 17 20 20 21 31 42
GR 5 10 14 16 17 19 28 38
DJS 27 33 37 40 37 39 50 56
ED 11 19 24 29 29 33 55 70

∀θ, θwf = 1, grid = 18
ER 22 44 50 61 67 72 89 94
GR 17 39 50 61 67 72 89 94
DJS 39 44 50 61 56 61 83 89
ED 17 39 44 56 56 61 89 94

∀θ, θwf = [4, 6, 8, 12], grid = 72
ER 3 6 10 11 11 13 19 33
GR 0 1 4 4 4 4 10 21
DJS 51 60 68 71 68 71 85 94
ED 17 26 33 39 40 46 78 94

∀θwf , θ = 1, grid = 15
ER 27 33 47 47 47 47 60 73
GR 27 27 40 40 40 40 47 67
DJS 60 60 60 60 60 60 60 60
ED 60 60 67 67 67 73 80 87

∀θwf , ∀θ > 1, grid = 225
ER 1 6 9 12 12 13 24 36
GR 0 4 8 10 11 12 22 32
DJS 22 28 33 36 33 35 48 55
ED 0 9 15 20 20 24 49 65

Notes.

The results are based on the mode of 1000 Monte Carlo replications. The presented

percentage is the fraction of the grid for which the mode equals the true number of factors

r = 3 according to the different estimators. In case ∀θ,∀θwf , the grid consists of 18×15 =

270 different simulations. The grid sizes for each case are reported on the first line.
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Table 2: Frequency of incorrect number of factors according to the different
estimators

(n, T ) 25 50 75 100 150 200 300 500

∀θ, ∀θwf , grid = 270
ER 100 97 93 90 89 87 77 62
GR 100 98 96 93 91 90 80 67
DJS 100 100 100 98 86 74 56 47
ED 100 96 89 83 81 77 56 35

∀θ, θwf = 1, grid = 18
ER 100 89 78 72 67 61 28 11
GR 100 89 83 72 67 61 28 11
DJS 100 100 100 72 67 61 28 11
ED 100 94 78 72 61 56 17 6

∀θ, θwf = [4, 6, 8, 12], grid = 72
ER 100 99 97 94 94 92 86 74
GR 100 100 100 99 99 99 93 83
DJS 100 100 100 100 83 53 21 11
ED 100 92 83 75 72 67 36 11

∀θwf , θ = 1, grid = 15
ER 100 100 73 67 67 67 47 27
GR 100 100 87 73 73 73 53 40
DJS 100 100 100 93 60 40 40 40
ED 100 100 40 40 40 33 27 13

∀θwf , ∀θ > 1, grid = 225
ER 100 100 99 97 96 95 85 70
GR 100 100 100 98 97 96 87 73
DJS 100 100 100 99 90 81 59 48
ED 100 100 99 93 91 87 63 40

Notes.

The results are based on the frequency of incorrect estimated number of factors for 1000

Monte Carlo replications. The presented percentage is the fraction of the grid for which

the frequency of incorrectly estimated number of factors is larger than 10%. In the case

∀θ,∀θwf , the grid consists of 18 × 15 = 270 different simulations. Grid sizes are denoted

by ‘grid’.
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The second block in the two tables only considers the configurations with-

out weak factors, i.e. θwf = 1, and summarizes the results based on the 18

different configurations for θ. In the absence of weak factors no obvious dif-

ferences exist in the performance of the proposed estimators, except perhaps

for small sample sizes. All the estimators are equally robust to variations in

the signal to noise ratio.

The third panel in Table 1 and Table 2, which summarizes the results over

the grid θwf = [4, 6, 8, 12], clearly shows that the estimators ER and GR are

not robust to the presence of weak factors. Moreover, the outcomes reveal

that for smaller sample sizes, DJS more often correctly estimates the true

number of factors than ED, while ED shows a lower frequency of incorrect

estimated number of factors.

The fourth panel in Table 1 and Table 2 considers the baseline case for

the signal to noise ratio, i.e. θ = 1, and summarizes the results based on

the 15 different weak factor configurations θwf . In these configurations, the

ER and GR estimators perform quite well comparably to the alternatives,

especially at the larger sample sizes. However, the robustness for these two

estimators breaks down in case of a weak overall factor structure, in which

the idiosyncratic component explains a larger part of the variability than the

common factors together, i.e. in case the inverse signal to noise ratio θ > 1.

The fifth panel in Table 1 and Table 2 considers configurations of an overall

weak factor structure. The results confirm the better performance of the ED

and DJS estimators.
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Impact of weak factors

The top three graphs in Figure 3 further illustrate the impact of the intro-

duction of a weak factor. We show the frequency of incorrect number of

estimated factors for different values of the inverse signal to noise ratio θ

for the estimators ER, DJS and ED for θwf = 4. While the upper panel of

Figure 2 plots this statistic for θwf = θ = 1, the graphs in the first row of

Figure 3 plot this statistic for all values of θ and θwf = 4. The mode of the

estimated number of factors being correct, i.e. k̂ = 3, is represented by the

blue colored surface, while the opposite is presented by the yellow colored

surface. The demarcation between the yellow and blue surfaces projected on

the ((n, T ) , θ)-plane is represented by the thick black line. The three graphs

clearly show that in the weak factor case, our proposed DJS outperformes

the ED estimator, while the ER estimator only performs well for high signal

to noise ratios, i.e. low values of θ.3

The three graphs in the bottom row of Figure 3 show the results for the

specific case of θ = 2. While the upper panel of Figure 2 plots the statistic

for θwf = θ = 1, the second row of Figure 3 plots this statistic for all values

of θwf and θ = 2. The graphs clearly shows that the ER estimator performs

poorly in case one factor is relatively very weak, i.e. θwf <
3
8
, or relatively

strong, i.e. θwf > 3, even at large sample sizes. In contrast, the ED and DJS

estimators converge for large sample sizes in case θwf > 0.75, while the DJS

estimator shows some outperformance for the correct number of factors even

for small sample sizes.

3A similar conclusion holds for the GR estimator, not shown here.
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Comparison of ED and DJS: size of threshold

We have seen above in Section 2 that our DJ(k)/k estimator belongs to the

family of estimators of Onatski (2010) with threshold value δ̂ in Equation (4).

Figure 4 shows the difference between the thresholds of the two estimators

for different sample sizes for simulations with r = 3 factors and θ = θwf = 1.

Figure 4: Comparison of ED and DJS thresholds (θ = 1 and θwf = 1, and
r = 3 factors)

The graph shows the ED threshold multiplied by .5, since Onatski deter-

mines the threshold with a regression and multiplies the outcome ad hoc by 2.

Our DJS threshold is equal to λ̂k+1/k and shown for k = 2, 3 and 4 where λ̂s

are the eigenvalues of X ′X/T . The figure shows that the threshold δ̂3 which

corresponds to k = 2 diverges for large sample sizes as expected whereas δ̂4
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and δ̂5 which correspond to k = 3 and k = 4 respectively, converge and are

close to the ED threshold.

4 Conclusion

This paper presents a simple criterion to determine the number of factors in

a data-rich environment, based on the comparison of surfaces under the scree

plot. Our criterion is intuitive appealing and straightforward to implement.

Our procedure is closely related to Onatski (2010). Monte Carlo simulations

taking into account weak factors reveal that our criterion outperforms the

two eigenvalue test ratios of Ahn and Horenstein (2013) for all sample sizes,

and Onatski’s (2010) edge distribution estimator, except for large samples.
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